
Distributed System
Study Notes

copyright ⒸHarrisonLL

Load balancing

Distributed Message Broker

Distributed Storage

Cloud Computing (Brief)

Load balancing

Load balancer

- Allows in front of servers
- Can scale up and down the service without exposing implementation details

to the clients
- Allows server’s health monitoring, which keeps the system reliable and highly

available
- Types: can use hardware or software load balancers (HAProxy, Nginx)

Load balancing strategy

- Round Robin: Uniformed/Weighted; sent to server one by one and start over
when one round finishes

- Source IP Hash (a user will connect to one backend server through one session)

Example scenarios: open session, maintaining online shopping cart state;

 Local server caching, improving performance by

 preloading data, caching data locally

 Hash(source.IP) = server #3

- Least Connection
- Servers has fewer connections will be assigned more tasks

- Weighted Response Time
- Server has fewer responses time will be assigned more tasks

- Usage pattern
- Server will send more complex data for metrics, such as

memory usage, disk operations, inbound or outbound network traffic (bytes)

Load balancing strategy

2 networking layer modes for Load Balancing

- Layer 4 (Transport) load balancing is best for:
- Simple Load Balancing, Lowest load balancing overhead

- Layer 7 (Application) load balancing is best for: (def: routing based on http header)
- Most system for better control over incoming traffic routing to our system

Layer 7 example (video streaming service)

General web requests

Search requests

Layer 7 example (video streaming service)

Video streaming requests

Layer 7 example (video streaming service)

Sample HAProxy (similar as nginx) config file
global

maxconn 508

defaults

mode http

timeout connect 10s

timeout client 50s

timeout server 50s

frontend http-in

bind *: 80

acl even path_end -1 /even

acl odd path end -1 /odd

use_ backend even_application_nodes if even

use_backend odd_application_nodes if odd

backend odd_application_nodes

balance roundrobin

option httpchk GET /status

server server01 localhost:9081 check inter 5s

server servers3 localhost:9683 check inter 5s

backend ever_application_nodes

balance roundrobin

option httpchk GET /status

server server02 localhost:9002 check inter 5s

listen stats_page

bind *83

stats enable

stats uri /

Advanced Routing (ACLs)

Health check every 5 s

- Intermediary software (middleware) that passes messages between senders and
receivers

- May provide additional capabilities such as data transformation, validation, queueing
and routing

- Msg brokers allows event driven, asynchronous network communication (vs direct synchronous
communication)

- Full decoupling between senders and receivers
- Msg brokers have queuing abilities that receivers do not have to present when msg are sent
- They have powerful queuing such that whenever receivers scale horizontally, msgs will not lost
- They also serve as load balancer

- Open Source: RabbitMQ, ActiveMQ, Kafka

Distributed Message Broker

Publish to and Subscribe msgs from Message Broker
Publisher will need
to publish msgs to
message broker

Then subscriber
will need to pull
msgs from
message broker

Example Distributed Banking system

Once a transaction request comes
in, the Banking API validate user
info from the Users DB and use
Kafka message brokers to
distribute downstream task.

The message broker has two
topics: suspicious/valid. If the
message is flagged as suspicious,
then it calls 2 api. If the valid, it
calls the other 2 api.

- Typically an application can store data to 1) file system or 2) DB
- Two Types: Relational database(SQL) vs Non Relational database (NOSQL)

- NOSQL is more scalable, supports DB sharding
- SQL guarantees ACID (Automaticity, Consistency, and Durability), but NOSQL do not
- NOSQL: MongoDB, Cassandra, DynamoDB, Redis

- Distributed Database can achieve: 1) Availability 2) Scalability 3) Fault
Tolerance

- Most Distributed Database use both sharding and replication to achieve
those three above (1) Availability 2) Scalability 3) Fault Tolerance)

Distributed Storage

https://en.wikipedia.org/wiki/ACID

Database Sharding

- Data Partition to different DB
- Sharding Strategy:

- Hash based sharding
- Key: userID; N of DB = 3
- Hash(key) = key mod N

- Range based sharding (more common)
- Ordered by name
- DB 1: name[A-H] …

- Concurrency control becomes complexed

Database Replication

- Creating identical copy of data into different machines
- Motivation

- High availability
- Fault tolerance
- Scalability and performance (High throughput and more concurrent R/W)

- Design choice: Eventual Consistency vs Strict Consistency
- Strict Consistency: user account, numbers of items in a story inventory, seats in

theater
- Eventual Consistency: posts/update to social media; analytics for product ratings

and numbers of views

Master-Slave & Master-Master

master - slave: write operations go to master, read operations go to slave

master - master: each node takes write and read operation

Quorum Consensus - Record Version

- The strategy used in strict consistency: set min numbers of read and write to
guarantee strict consistency

- Every update to a record increments the version number
- Old record: key1, data1, 1; new record: key1, data2, 2

- min Read + min Write > Numbers of node, guarantee to have strict
consistency;

Else will have eventual consistency

- Infrastructure as service
- AWS, GCP, Azura
- Data replication and configuration sharing between geo regions for fault

tolerance, stability, security isolation, low latency
- Building Blocks:

- Computing nodes:
- AWS - Elastic Cloud Computing (EC2), GCP - Compute Engine, Azure - VM

- Autoscaling:
- AWS - Autoscaling groups, GCP - Instance Group Autoscaling, Azure - VM scale

Sets
- Load Balancer
- Storage

- AWS - Amazon Simple Storage Service (S3), GCP - Google Cloud Storage, Azure -
Azure Storage

- ….

Cloud Computing

